INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

An Efficient Detection of Disconnected Links in
Wireless Sensor Network

1M.Rajalakshmi, 2G.Balaraju
M Tech Student, ’Asst. professor
1’ZDept of Computer Science and Engineering,
Y2Sri Sunflower College of Engineering and Technology, Lankapally, Krishna dist, A.P.

ABSTRACT: Wireless sensor networks (WSNs) have emerged as a promising new technology to monitor large
regions at high spatial and temporal resolution. The inherent nature of WSNs such as unattended operation, battery-
powered nodes, and harsh environments pose major challenges. One of the challenges is to ensure that the network
is connected. The connectivity of the network can easily be disrupted due to unpredictable wireless channels, early
depletion of node’s energy, and physical tampering by hostile users. Network disconnection, typically referred as a
network cut, may cause a number of problems. In this Paper, We propose a distributed algorithm that allows every
node to monitor the topology of the (initially connected) graph and detect if a cut occurs. For reasons that will be
clear soon, one node of the network is denoted as the “source node”. The algorithm consists of every node updating
a local state periodically by communicating with its nearest neighbors. The state of a node converges to a positive
value in the absence of a cut. If a node is rendered disconnected from the source as a result of a cut, its state
converges to 0. By monitoring its state, therefore, a node can determine if it has been separated from the source
node. In addition, the nodes that are still connected to the source are able to detect that, one, a cut has occurred
somewhere in the network, and two, they are still connected to the source node. The algorithm is iterative, a faster
convergence rate is desirable for it to be effective. The convergence rate of the proposed algorithm is not only quite
fast, but is independent of the size of the network. As a result, the delay between the occurrence of a cut and its
detection by all the nodes can be made independent of the size of the network. This last feature makes the algorithm
highly scalable to large sensor networks.

Keywords: Wireless Sensor Network, Cut Detection,

disconnected segment of the network might lead to
data loss, wasted power consumption, and congestion
around the network cut.

In this paper we consider the problem of
detecting cuts in wireless sensor networks. A sensor
network is modeled as a graph G = (V' , E) whose
node set V' correspond to the wireless sensors and

LINTRODUCTION

Wireless sensor networks (WSNs), consisting of
large numbers of low-cost and low-power wireless
nodes, have recently been employed in many
applications: disaster response [1], military

surveillance [2], and medical care [3] among others.
The inherent nature of WSNs such as unattended
operation, battery-powered nodes, and harsh
environments pose major challenges. One of the
challenges is to ensure that the network is connected.
The connectivity of the network can easily be
disrupted due to unpredictable wireless channels,
early depletion of node’s energy, and physical
tampering by hostile users.Network disconnection,
typically referred as a network cut, may cause a
number of problems. For example, ill-informed
decisions to route data to a node located in a

whose edges E consists of pairs of nodes (u, v) that
can communicate directly with each other. A cut is
defined as the failure of a set of nodes so that the
removal of those nodes and the edges incident on
them from the original graph results in the separation
of the graph into two or more components.rida.

We propose a distributed algorithm that
allows every node to monitor the topology of the
(initially connected) graph and detect if a cut occurs.
For reasons that will be clear soon, one node of the
network is denoted as the “source node”. The
algorithm consists of every node updating a local

97 | uDcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com

state periodically by communicating with its nearest
neighbors. The state of a node converges to a positive
value in the absence of a cut. If a node is rendered
disconnected from the source as a result of a cut, its
state converges to 0. By monitoring its state,
therefore, a node can determine if it has been
separated from the source node. In addition, the
nodes that are still connected to the source are able to
detect that, one, a cut has occurred somewhere in the
network, and two, they are still connected to the
source node. We call it the Distributed Source
Separation Detection (DSSD) algorithm.

Since the algorithm is iterative, a faster
convergence rate is desirable for it to be effective.
The convergence rate of the proposed algorithm is
not only quite fast, but is independent of the size of
the network. As a result, the delay between the
occurrence of a cut and its detection by all the nodes
can be made independent of the size of the network.
This last feature makes the algorithm highly scalable
to large sensor networks.

ILLRELATED WORKS

Shrivastava et. al. [1], the challenges posed
by the possibility of network partitioning in WSNs
has been recognized in several papers (see, e.g. [2],
[3], [4]) but the problem of detecting when such
partitioning occurs seems to have received little
attention. Kleinberg ef. al. have studied the problem
of detecting network failures in wired networks, and
proposed schemes for the case when k edges fail
independently [5], [6].

To the best of our knowledge, the work by
Shrivastava et. al. [1] is the only one that addresses
the problem of detecting cuts in wireless sensor
networks. They developed an algorithm for detecting
0 linear cuts, which is a linear separation of on nodes
from the base station. The reason for the restriction to
linear cuts is that their algorithm relies critically on a
certain duality between straight line segments and
points in 2D, which also restricts the algorithm in [1]
to sensor networks deployed in the 2D plane. The
algorithm developed in [1] needs a few nodes called
sentinels that communicate with a base station either
directly or through multi-hop paths. The base station
detects @-cuts by monitoring whether it can receive
messages from the sentinels.

In contrast to the algorithm in [1], the DSSD
algorithm proposed in this paper is not limited to o-

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

linear cuts; it can detect cuts that separate the
network into multiple components of arbitrary
shapes. Furthermore, the DSSD algorithm is not
restricted to networks deployed in 2D, it does not
require deploying sentinel nodes, and it allows every
node to detect if a cut occurs.

The DSSD (distributed source separation
detection) algorithm involves only nearest neighbor
communication, which eliminates the need of routing
messages to the source node. This feature makes the
algorithm applicable to mobile nodes as well. Since
the computation that a node has to carry out involves
only averaging, it is particularly well suited to
wireless sensor networks with nodes that have limited
computational capability. Simulations are reported
in [7] that illustrate the capability of the algorithm to
detect cuts in mobile networks, and also its ability to
detect if a “reconnection” occurs after a cut. The
DSSD algorithm has been demonstrated in an
wireless testbed with MicaZ motes [8].

III.LPROBLEM STATEMENT

Consider a sensor network modeled as an
undirected graph G = (V' , E), whose node set V'
represents the sensor nodes and the edge set E
consists of pairs of nodes (u, v) such that nodes u and
v can exchange messages between each other. Note
that we assume inter-node communication is
symmetric. An edge (u, v) is said to be incident on
both the u and v. The nodes that share an edge with a
particular node u are called the neighbors of u. A cut
is the failure of a set of nodes ¥ < V such that the
removal of the nodes in Vcut and
the edges that are incident on Veut from G results in
G being divided into multiple connected components.
Recall that an undirected graph is said to be
connected if there is a way to go from every node to
every other node by traversing the edges, and that a
component Ge of a graph G is a maximal connected
subgraph of G (i.e., no other connected subgraph G'c
of G contains Gc as its subgraph). We are interested
in devising a way to detect if a subset of the nodes
has been disconnected from a distinguished node,
which we call the source node, due to the occurrence
of a cut.

98 | uDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com

Fig. 1. A graph describing a sensor network (left),
and the associated electrical network (right). In the
electrical network, one node is chosen as the source
that injects s Ampere current into the network, and
additional nodes are introduced (fictitiously) that are
grounded, through which the current flows out of the
network. The thick line segments in the electrical
network are resistors of 1 resistance.

IV. PROPOSED SYSTEM

The algorithm is based on an electrical
analogy.Given an undirected graph G = (', E)with,
say,n nodes and m edges that describes the sensor
network, we first designate one of the nodes as the
source node. The algorithm is designed to detect
when nodes get disconnected from the source node.
We now construct a fictitious graph Gelec = (V elec,
E elec) where V elec = V < V fict, where V fict
consists of n — 1 nodes, one node for every node in V'
except the source node, and every node in V is
connected to its corresponding fictitious node in V
fict with a single edge. These edges constitute the
extra edges in E elec that were not there in £ . Now
an electrical network (Gelec, 1) is imagined by
assigning to every edge of Gelec a resistance of 1 .
Figure 1 shows a sensor network and the
corresponding electrical network.

The DSSD algorithm consists of two phases.
One is a state update law, which a simple iterative
procedure to compute the node potentials in the
electrical network (Gelec, 1) when s Ampere current
is injected at the source node and extracted through
the nodes Vfict, with all the nodes in Vfict grounded.
The source strength s is a design parameter. The
other phase of the algorithm consists of monitoring
the state of a node, which is used to detect if a cut has
occurred.We now describe the two phases below.
Note that the separation into two phases is merely for
conceptual clarity, they are carried out
simultaneously at every node.

State update law

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Let G(k) = (V (k), E (k)) denote the sensor
network that consists of all the nodes and edges of G
that are still active at time k, where k=0, 1,2, ...1s
an iteration counter. For ease of description, we index
the source node as 1. Every node u maintains a scalar
state xu(k) that is iteratively updated. At every
iteration k, nodes broadcast their current states. Let
Nuk) = {v|(u, v) E (k)} denote the set of
neighbors of u in the graph G(k). Every node in V
except the source updates its state as:

l 1 Z To(k), zu(0)=0, u#l,

zulk+1) = n‘“\T

vENu(k)

where du(k) := |[Nu(k)| is the number of
active neighbors of u at time k. If we count the
fictitious node corresponding to u as one of u’s
neighbors whose state is held fixed at O, then the
above can be thought of as an average of the
neighbors’ states. The source node updates its state
as:

I fg 1) = ; Z ,J'E.:;ﬂ": +5

: .J'I[UI: =1).
dllkjl‘-' +1 veN (k)

The description above assumes that all
updates are done synchronously, or, in other words,
every node shares the same iteration counter k. In
practice, especially with wireless communication, an
asynchronous update is preferable. To achieve this,
every node keeps in its buffer a copy of the last
received state of each of its neighbors. If in a
particular iteration, a node does not receive messages
from a neighbor during a time-out period, it updates
its state using the last successfully received state
from that neighbor. When a node fails, its neighbors
will cease to receive messages from it permanently.
When a node does not receive broadcasts from one of
its neighbors for sufficiently long time, it removes
that neighbor from its neighbor set. From then on, the
node carries on the algorithm with the remaining
neighbors.

We will need the following terminology.
Given an electrical network (G, 1), two nodes u and
o, and a set of nodes U, all in G, suppose all of the
nodes in U are shorted together and grounded. The
potential at u (with respect to the ground) when a

99 | uDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com

current source of s Ampere is connected between o
and the ground is called the potential difference
between u and U with a current flow of s between o
and U in the network (G, 1).

The evolution of the node states with and
without the occurrence of cuts is stated in the next
theorem. Note that we assume that the source node
never fails. The proof of the theorem is provided in
the Appendix.

Theorem 1: Let the nodes of a sensor network
modeled

as an undirected graph G(t) = (V , E (t)) that is
initially

connected (i.e., G(0) is connected) iteratively update
their stated by (2) and (2) with an arbitrary initial
condition xu(0), u< V.

e If no nodes or edges fail, so that G(t) = G(0)
for all t, the state of every node converges to
the potential difference between itself and V'
fict with a current flow of s between the
source and ¥ fict in the electrical network
(Gelec, 1). Furthermore, the steady state
potential is positive for every node.

e If a node u gets disconnected from the
source at time Tt > 0 and remains
disconnected from the source for

. T \
Fhct | Usource)

=
Ysourees

"Vrﬂ It

Fig.2. The connected components of the electrical
network after a cut occurs in the graph shown in
Figure 1. all k >t, then its state converges to
0,i.e..xu(k) > 0ask—1— .

State monitoring for cut detection

Theorem 1 shows how the occurrence of a cut in the
network is manifested in the states of the nodes. By
analyzing their own states, nodes can detect if a cut
has occurred.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Suppose a cut occurs at some time t > 0
which separates the network into n components
Gsource, G2, . .., Gn, the component Gsource
containing the source node. Since there is no source
(and therefore no current injection) in each of the
components G2, . . Gn disconnected from the source,
it follows from Theorem 1 that the state of every
node in each of these components will converge to
zero. When the potential at a particular node drops
below a particular threshold value, the node can
declare itself cut from the source node. In fact, there
may be additional node failures (and even increase in
the number of components) after the cut appears.
Since the state of a node converges to 0 if there is no
path to the source, additional time variation in the
network will not affect cut detection.

If additional failures do not occur after the
cut occurs, it follows from Theorem 1 that the states
of the nodes that are in the component Gsource
(which contains the source) will converge to new
steady state values. So, if a node detects that its state
has converged to a steady state, then changed, and
then again converged to a new steady state value that
is different from the initially seen steady state, it
concludes that there has been a cut somewhere in the
network.

A node detects when steady state is reached
by comparing the derivative of its state (with respect
to time) with a small number ¢ that is provided a-
priori. The parameters s and ¢ are design variables.

V. CONCLUSION

In this paper, the proposed algorithm can
also be used for detection of “reconnection”. If a
component that is disconnected due to a cut gets
reconnected later (say, due to the repairing of some
of the failed nodes), the nodes can detect such
reconnection from their states. The DSSD Algorithm
efficiently identifies the cuts in wireless sensor
network compare to existing systems.

References

1. N. Shrivastava, S. Suri, and C. D. T’oth,
“Detecting cuts in sensor networks,” in IPSN
'05: Proceedings of the 4th international

100 | uDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

symposium Information processing in sensor
networks, 2005, pp. 210-217.

2. A. Cerpa and D. Estrin, “ASCENT: Adaptive
Self-Configuring sEnsor Networks
Topologies,” in IEEE Infocom. New York, NY:
IEEE, June 2002.

3. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless,
and C. Gill, “Integrated coverage and
connectivity configuration in wireless sensor
networks,” in SenSys03, Los Angeles,
California, USA, November 57 2003.

4. X.J. Du, M. Zhang, K. E. Nygard, S. Guizani,
and H.-H. Chen, “Selfhealing sensor networks
with distributed decision making,”
International Journal of Sensor Networks
(IJSNET), vol. 2, no. 5/6, 2007.

5. J. Kleinberg, “Detecting a network failure,”
Internet Mathematics, vol. 1, pp. 37-56, 2003.

6. J. Kleinberg, M. Sandler, and A. Slivkins,
“Network failure detection and graph
connectivity,” in the 15th ACM-SIAM
Symposium on Discrete Algorithms, 2004.

7. P. Barooah, H. Chenji, R. Stoleru, and T.
Kalm’ar-Nagy, “Detecting separation in robotic
sensor networks,” 2008, submitted to the IEEE
wireless communications magazine.

8. H. Chenji, P. Barooah, R. Stoleru, and T.
Kalm’ar-Nagy, “Demo abstract: Distributed cut
detection in sensor networks,” in 6th ACM
Conference on Embedded Networked Sensor
Systems (SenSys’08), November 2008.

9. G. H. Golub and C. F. van Loan, Matrix
Computations, 3rd ed. The John Hopkins
University Press, 1996.

10. F. Chung, “Spectral graph theory,” Regional
Conference Series in Mathematics, Providence,
R.I., 1997.

Rajya lakshmi M, She completed her B.Tech
from jntu Kakinada. At present she is
persuing her M.Tech in Sri sunflower
college of engineering and technology.

101 | upcsT

